Cluster of genes that encode positive and negative elements influencing filament length in a heterocyst-forming cyanobacterium.

نویسندگان

  • Victoria Merino-Puerto
  • Antonia Herrero
  • Enrique Flores
چکیده

The filamentous, heterocyst-forming cyanobacteria perform oxygenic photosynthesis in vegetative cells and nitrogen fixation in heterocysts, and their filaments can be hundreds of cells long. In the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, the genes in the fraC-fraD-fraE operon are required for filament integrity mainly under conditions of nitrogen deprivation. The fraC operon transcript partially overlaps gene all2395, which lies in the opposite DNA strand and ends 1 bp beyond fraE. Gene all2395 produces transcripts of 1.35 kb (major transcript) and 2.2 kb (minor transcript) that overlap fraE and whose expression is dependent on the N-control transcription factor NtcA. Insertion of a gene cassette containing transcriptional terminators between fraE and all2395 prevented production of the antisense RNAs and resulted in an increased length of the cyanobacterial filaments. Deletion of all2395 resulted in a larger increase of filament length and in impaired growth, mainly under N2-fixing conditions and specifically on solid medium. We denote all2395 the fraF gene, which encodes a protein restricting filament length. A FraF-green fluorescent protein (GFP) fusion protein accumulated significantly in heterocysts. Similar to some heterocyst differentiation-related proteins such as HglK, HetL, and PatL, FraF is a pentapeptide repeat protein. We conclude that the fraC-fraD-fraE←fraF gene cluster (where the arrow indicates a change in orientation), in which cis antisense RNAs are produced, regulates morphology by encoding proteins that influence positively (FraC, FraD, FraE) or negatively (FraF) the length of the filament mainly under conditions of nitrogen deprivation. This gene cluster is often conserved in heterocyst-forming cyanobacteria.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell envelope components influencing filament length in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120.

Heterocyst-forming cyanobacteria grow as chains of cells (known as trichomes or filaments) that can be hundreds of cells long. The filament consists of individual cells surrounded by a cytoplasmic membrane and peptidoglycan layers. The cells, however, share a continuous outer membrane, and septal proteins, such as SepJ, are important for cell-cell contact and filament formation. Here, we addres...

متن کامل

Surveying DNA Elements within Functional Genes of Heterocyst-Forming Cyanobacteria

Some cyanobacteria are capable of differentiating a variety of cell types in response to environmental factors. For instance, in low nitrogen conditions, some cyanobacteria form heterocysts, which are specialized for N2 fixation. Many heterocyst-forming cyanobacteria have DNA elements interrupting key N2 fixation genes, elements that are excised during heterocyst differentiation. While the mech...

متن کامل

Restricted cellular differentiation in cyanobacterial filaments.

A lthough commonly considered simple organisms that grow as single cells, many bacteria can grow as filaments made of chains of cells. In cyanobacteria, prokaryotes that perform oxygen-evolving photosynthesis, filamentous forms developed early in evolution (1). In the most complex filamentous cyanobacteria, as many as four cell types can be found: vegetative cells that perform oxygenic photosyn...

متن کامل

Cyanobacterial transposons Tn5469 and Tn5541 represent a novel noncomposite transposon family.

A noncomposite transposon, designated Tn5541, was isolated from strain Fd33 of the filamentous cyanobacterium Fremyella diplosiphon UTEX 481. Sequence analysis showed that Tn5541 is structurally and genetically very similar to Tn5469, which is also endogenous to F. diplosiphon. Both Tn5469 and Tn5541 encode homologous forms of an unusual composite transposase and a protein of unknown function. ...

متن کامل

Adaptation of the Cyanobacterium fischerella sp. ISC 107 to the combined effects of pH and carbon dioxide concentration. Mahboobeh Rajabnasab1, Ramezan Ali Khavari-nejad1*, Shademan Shokravi2 and Taher Nejadsattari1

The aim of this study was to investigate the adaptation of the cyanobacterium Fischerella sp. ISC 107to combined effects of carbon dioxide concentration, acidic and alkalinity. Axenic strain was incubated in BG0-11 medium. Carbon dioxide treatments were limited and relatively non-limited. Acidic (pH 5), neutral (pH7), and alkaline (pH 9) conditions were employed in each treatment. Survival, gro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 195 17  شماره 

صفحات  -

تاریخ انتشار 2013